الگوی تعیین موفقیت طرحهای سرمایهگذاری کشاورزی: کاربرد شبکه عصبی چندلایه پرسپترون
Authors
Abstract:
هدف تحقیق حاضر شناسایی و ارزیابی الگویی برای پیشبینی موفقیت یا شکست طرحهای پیشنهادی سرمایهگذاری کشاورزی در مناطق روستایی است. متغیرهای پیشبینیکننده، عبارتاند از مؤلفههای محیط سرمایهگذاری و ویژگیهای پروژه. براساس نوشتارهای تخصصی در این زمینه، شبکه عصبی چندلایه پرسپترون با الگوریتم یادگیری پس انتشار خطا، تکنیک و الگوی نسبتاً مناسبی برای تبیین مسئله به شمار میآید. برای ارزیابی کارایی الگو از شاخص میانگین مربعات خطا، منحنی ROC و شاخص صحت پیشبینی استفاده شده است. ارزیابی الگو مشخص میسازد که شبکه عصبی با 24 نرون در لایه پنهان میتواند حدود 5/77 درصد از نمونهها را بهدرستی پیشبینی و طبقهبندی کند. براساس نتایج بهدست آمده از دادههای آزمون شبکه، الگوی ارائهشده توان بیشتری برای پیشبینی و طبقهبندی نمونههای ناموفق در مقایسه با نمونههای موفق دارد (2/79 درصد در برابر 75 درصد). همچنین در این تحقیق، به منظور ارزیابی قابلیت کاربرد شبکه، 31 نمونه جدید بهصورت آفلاین به شبکه ارائه شدند. نتیجه نشان میدهد که الگوی ارائه شده میتواند حدود 5/64 درصد از نمونهها را به درستی طبقهبندی کند. با الگوی طراحیشده میتوان احتمال شکست یا موفقیت هر یک از طرحها و پروژههای جدید را براساس متغیرهای پیشبینیکننده تخمین زد؛ و میتوان آن را به همراه دانش تصمیمگیرهای متولیان توسعه روستایی و کشاورزی و مدیران مؤسسات مالی و اعتباری، به عنوان ابزاری مناسب برای انتخاب پروژهها و طرحهای بهینه برای سرمایهگذاری و ارائه تسهیلات به آنها، به کار گرفت. مراحل مختلف آموزش، آزمون، اعتبارسنجی و کاربرد شبکه و یا اصطلاحاً شبیهسازی شبکه- با استفاده از نرمافزار MATLAB انجام شده است.
similar resources
الگوی تعیین موفقیت طرح های سرمایه گذاری کشاورزی: کاربرد شبکه عصبی چندلایه پرسپترون
هدف تحقیق حاضر شناسایی و ارزیابی الگویی برای پیش بینی موفقیت یا شکست طرح های پیشنهادی سرمایه گذاری کشاورزی در مناطق روستایی است. متغیرهای پیش بینی کننده، عبارت اند از مؤلفه های محیط سرمایه گذاری و ویژگی های پروژه. براساس نوشتارهای تخصصی در این زمینه، شبکه عصبی چندلایه پرسپترون با الگوریتم یادگیری پس انتشار خطا، تکنیک و الگوی نسبتاً مناسبی برای تبیین مسئله به شمار می آید. برای ارزیابی کارایی الگو...
full textتعیین توپولوژی شبکه عصبی پرسپترون چندلایه مناسب مساله به کمک الگوریتمهای تکاملی
شبکه عصبی پرسپترون چند لایه یکی از پر کاربردترین نمونه های شبکه عصبی می باشد. کارایی این شبکه عصبی برای حل یک مسئله بستگی به توپولوژی در نظر گرفته شده برای شبکه دارد. چنانچه توپولوژی شبکه ساده تر از حد نیاز باشد امکان یادگیری در شبکه عصبی وجود ندارد و چنانچه توپولوژی پیچیده تر از حد نیاز باشد مشکل overtraining رخ داده و قدرت تعمیم شبکه به دست آمده بسیار کم خواهد بود. یکی از راههای تعیین توپولوژ...
15 صفحه اولپیش بینی بزرگای زلزله با استفاده از شبکه عصبی پرسپترون چندلایه
به دلیل نواقص موجود در روش های پیشین محاسبه بزرگای زلزله، شبکه عصبی به عنوان یک روش جدید برای این منظور آزمایش می گردد. در این مقاله نوعی شبکه عصبی با نام پرسپترون چندلایه برای پیش بینی بزرگای گشتاوری زلزله مورد استفاده قرار گرفته است. شبکه عصبی پرسپترون شامل سه لایه اصلی با نام های لایه ورودی، لایه پنهان و لایه خروجی است. ورودی های این شبکه شش متغیر مربوط به مکان و زمان وقوع زلزله و همچنین مشخ...
full textپیش بینی دماهای ماهانه ایستگاه های همدید منتخب استان اصفهان، با استفاده از شبکه عصبی مصنوعی پرسپترون چندلایه
پیش بینی دما از کاربردی ترین برآوردهای عناصر آب و هوایی است. امروزه بخش های کشاورزی و صنعت وابستگی زیادی به شرایط دمایی (آب و هوا) دارند. دما یکی از فراسنج های بسیار مهم آب و هوایی است و از عوامل اصلی هویت آب و هوایی هر ناحیه محسوب می شود. هدف از انجام این پژوهش، مدل سازی برای پیش بینی میانگین دمای ماهانه ایستگاه های منتخب استان اصفهان است؛ از این رو، پس از بررسی طول دوره آماری ایستگاههای موجود...
full textارائه مدل شناسایی تقلب مالیاتی بر مبنای ترکیب الگوریتم درخت تصمیم ID3 بهبود یافته و شبکه های عصبی پرسپترون چندلایه
درآمدهای مالیاتی یکی از مهمترین منابع درآمدی دولت و تأمینکننده بخش عمدهای از هزینههای دولت است. در سالهای اخیر تقلب در صورتهای مالی و اظهارنامه های مالیاتی به طور فزایندهای به یک مشکل جدی برای کسب و کار، دولت و سرمایهگذاران تبدیل شده است. اکثر مؤدیان مالیاتی به دنبال راهی برای دستکاری در صورتهای مالی و کاهش سود مشمول مالیات ابرازی خود میباشند. از اینرو، شناسایی متقلبین مالیاتی و شرکته...
full textارایه مدل بهینه ریسک اعتباری فرایند تامین مالی جمعی با استفاده از شبکه عصبی پرسپترون چندلایه (MLP)
هدف مطالعه حاضر، پیشبینی و ارایه مدل ریسک اعتباری جهت سرمایهپذیران تأمین مالی جمعی مبتنی بر بدهی است. با توجه به پیچیدگی ارزیابی ریسک، بهترین معماری شبکه عصبی الگوریتم پرسپترون چند لایه برای شبیهسازی انتخاب شد. جامعه آماری این پژوهش، اطلاعات مالی پرونده اعتباری/تسهیلاتی کلیه مشتریان (506 مورد) یکی از بانکهای کشور مربوط به سال 98-97 است. به منظور معناداری رابطه شاخصهای استخراج شده از نمون...
full textMy Resources
Journal title
volume 3 issue 11
pages 59- 88
publication date 2012-11-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023